12月6日 曾文龙博士学术报告(数学与统计学院)

创建部门:数学与统计学院 发布者:吴福燕发布时间:2025-12-03浏览次数:11

报告人:曾文龙 博士

报告题目:Construction and Decomposition of Scaling Matrices for Sk-SDD Matrices and Their Application to Linear Complementarity Problems

报告时间:2025126日(周六)下午5:00

报告地点:云龙校区6号楼304会议室

主办单位:数学与统计学院、数学研究院、科学技术研究院

报告人简介:

20236月博士毕业于湘潭大学数学专业,20237月至20257月在上海大学从事博士后研究工作,出站后进入南昌大学工作。主持国家资助博士后研究人员计划C档、博士后科研业绩评估考核三档资助、湖南省研究生科研创新项目(重点项目)。已在Numer. Algorithms、J. Comput. Appl. Math.、East Asian J. Appl. Math.、Appl. Math. Lett.、Linear Multilinear AlgebraSCI期刊发表论文10余篇,其中第一作者9篇。获湖南省芙蓉学子·学术科研奖、“华为杯”中国研究生数学建模竞赛二等奖等荣誉。

报告摘要:

We introduce a novel subclass of H-matrices termed Sk-strictly diagonally dominant (Sk-SDD) matrices, where k is any positive integer. These matrices generalize SDD matrices, S-SDD matrices, and generalized SDD1 matrices. We present a method for constructing scaling matrices for Sk-SDD matrices, such that their product with the scaling matrix yields an SDD matrix. By decomposing the scaling matrix into a product of two matrices, we establish an upper bound on the infinity norm of the inverse matrix for Sk-SDD matrices. Moreover, based on this decomposition, we derive an error bound for the linear complementarity problem associated with Sk-SDD matrices. Notably, our error bound achieves a theoretical improvement over existing results. Furthermore, we demonstrate the effectiveness and superiority of our findings via numerical experiments with randomly generated matrices.